Promoting Gender Equality in and through STEM: Opportunities for STCMs
ASTC Conference 1 October 2018
Women and girls must be front and center in creating STEM based solutions that contribute to meeting the SDGs. Their talent, perspectives, needs are essential for the relevance and success of solutions and in ensuring that girls and women access STEM benefits.

STEM literacy and skills is also essential for empowerment of girls and women at the individual level; for life decisions, for civic participation / citizenship, and for economic opportunity.
Snapshot: Gender Equality and STEM

- **Access to Technology**
 - ~15% global digital gender gap (up to 32% regionally)

- **Education**
 - Access to quality STEM secondary education
 - Self-Selection out and drop in self-perception and efficacy in Middle-High School

- **Workforce & Leadership**
 - Attrition: After about 12 years, 50% of women who originally worked in STEM have left
 - Resources: 2% VC goes to women headed start-ups
 - Leadership: ICT sector, 6% ICT Ministers and C-Suite top 100 companies

- **Other Forms Influence**
 - Women make up 12% in National Academies of Science (global)
 - Sources in journalism 3:1 (m/w)
 - Authors of academic papers -> 16 years to achieve equality; 258 in physics discipline

Educational and Occupational Segregation

While women receive over half of bachelor’s degrees awarded in the biological sciences, they receive far fewer in the computer sciences (17.9%), engineering (19.3%), physical sciences (39%) and mathematics (43.1%).

Educational and Occupational Segregation

While women receive over half of bachelor’s degrees awarded in the biological sciences, they receive far fewer in the computer sciences (17.9%), engineering (19.3%), physical sciences (39%) and mathematics (43.1%).

Educational and Occupational Segregation

While women receive over half of bachelor’s degrees awarded in the biological sciences, they receive far fewer in the computer sciences (17.9%), engineering (19.3%), physical sciences (39%) and mathematics (43.1%).

Educational and Occupational Segregation

While women receive over half of bachelor’s degrees awarded in the biological sciences, they receive far fewer in the computer sciences (17.9%), engineering (19.3%), physical sciences (39%) and mathematics (43.1%).
Gender and STEM: A Three Part Framework

I. Education

- Girls and women’s STEM literacy, skill development and pathways to studies through STCM outreach, exhibits, role modeling, and other programs

II. Workforce

- STCM research, development, exhibitions and other work that considers and responds to differentiated experience and needs of women and girls.

III. R&D & Access to STEM Benefits

- Women’s employment and leadership in STCMs and their industry partners
I. STEM Education Ecosystem

Ecological Framework of factors influencing girls’ & women’s participation, achievement & progression in STEM studies.
II. Gender Equality in the Workplace

Leadership
- **CEO Statement of Support**
- Company has Board, CEO, and/or Executive support for gender equality
- Company has an organization-wide gender equality strategy

Workplace
- Recruitment & retention
- Professional development and promotion
- Equal Pay, Flexi time & Telework
- Parental leave
- Zero violence, harassment and sexual exploitation
- Health, safety, and hygiene

Market and Community (adapted)
- Expand relationships with women-owned businesses and women’s organizations
- Encourage partners to advance gender equality
- Responsible marketing practices
- Gender issues considered when engaging with community – as partners and as users, beneficiaries, and as co-creators

Though created for businesses, these principles can be applied in STCMs and by their partners in industry
III. Gendered Innovations – R&D and Benefits of STEM

Three Strategic Approaches
• 1. "Fix the Numbers of Women" focuses on increasing women's participation.
• 2. "Fix the Institutions" promotes gender equality in careers through structural change in research organizations (NSF; European Commission, 2011).
• 3. "Fix the Knowledge" or "gendered innovations" or the "gender dimension" stimulates excellence in science and technology by integrating sex and gender analysis into research.

Gendered Innovations:
• Add value to research and engineering by ensuring excellence and quality in outcomes and enhancing sustainability.
• Add value to society by making research more responsive to social needs.
• Add value to business by developing new ideas, patents, and technology.

Gendered Innovations stimulate gender-responsible science and technology, thereby enhancing the quality of life for both women and men worldwide.

* From Stanford University Gendered Innovations
Building a Gender Equality Initiative: Global Cooperation and Collaboration amongst ASTC members

Select insights from the ongoing STCM consultation on gender equality and STEM include:

- Set the Foundations
- Take Holistic Approaches
- Recognize Context
- Make Global to Local Connections

Led by:

[Logos of ASTC, FUTURISTAS, and Girls Collaborative Project]
Insights from ongoing STCMs consultation on gender equality and STEM

Foundations

• Need for stronger theoretical foundations on gender equality and STEM to inform work.
• Basic knowledge sharing and support, particularly around the “how-to” is required.
• Engage women and girls in development/advisory role.

Holistic Approaches

• Seek transformation. Once off or narrow focused programs are not transformative. Need to embed gender equality lens in all work.
• Understand how STCMs fit within larger gender and STEM ecosystem and where most valuable contributions can be made.
Insights from ongoing STCMs consultation on gender equality and STEM

Context

- Not all girls and women are the same. Address intersectionality.
- Not all STCMs are the same. Account for specific challenges/opportunities around: regional variation, girls & STEM bottlenecks; target audience; etc. Create clusters where commonalities in addition to addressing cross-cutting issues (e.g. stereotypes).
- Locally, STCMs need to work with range of stakeholder groups (like women’s organizations in addition to private sector).

Local - Global

- Connect local community needs to global imperatives and trends.
- Take better advantage of regional and global opportunities around learning, partnerships, advocacy and accessing resources.
Global Cooperation and Collaboration: Your Views

- What are you doing on these issues and what would you like to do looking forward? What is working, isn’t, and why (barriers)? Where are there gaps in action? How does your STCM fit into the larger ecosystem?
- What would you like to see in terms of cross-institutional support and collaboration?
- How can we work together on something collectively that affects change?
Global Cooperation and Collaboration: Next Steps

- Form a Community of Practice for general knowledge sharing and networking
- Continued consultation and workshopping
- Identify strategic, impactful and innovative action to implement.
Get in Touch!

futuristas.org
jennifer.breslin@futuristas.org
GENDER

segregation

in subject choice
Many more women than men graduate, but far fewer achieve STEM degrees.

Source: Global Education Monitoring Report Team blog, 2018,
ASTC - Maximising girls' engagement in informal science learning

35% STEM higher education students

ASTC-Maximising girls’ engagement in informal science learning

<table>
<thead>
<tr>
<th>Sector</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health and welfare</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>Natural science, mathematics and statistics</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>Engineering, manufacturing and construction</td>
<td>73</td>
<td>27</td>
</tr>
<tr>
<td>Information and communication technologies</td>
<td>72</td>
<td>28</td>
</tr>
</tbody>
</table>

African context: Women in ICT in higher education

<table>
<thead>
<tr>
<th>Country</th>
<th>% of students in ICT studies in higher education that are female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimbabwe</td>
<td>58</td>
</tr>
<tr>
<td>Eritrea</td>
<td>41</td>
</tr>
<tr>
<td>South Africa</td>
<td>37</td>
</tr>
<tr>
<td>Mauritius</td>
<td>31</td>
</tr>
<tr>
<td>Lesotho</td>
<td>29</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>29</td>
</tr>
<tr>
<td>Mozambique</td>
<td>28</td>
</tr>
<tr>
<td>Seychelles</td>
<td>27</td>
</tr>
<tr>
<td>Madagascar</td>
<td>24</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>24</td>
</tr>
<tr>
<td>Mali</td>
<td>16</td>
</tr>
<tr>
<td>Burundi</td>
<td>16</td>
</tr>
<tr>
<td>Benin</td>
<td>16</td>
</tr>
<tr>
<td>Ghana</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: UNESCO Institute of Statistics database

28% globally
ASTC-Maximising girls’ engagement in informal science learning
ASTC-Maximising girls’ engagement in informal science learning
Factors influencing girls’ education in STEM

Biology
Computer and information literacy

Australia: Females score lower
Chile: Females score lower
Croatia: Females score lower
Czechia: Females score lower
Germany: Females score lower
Rep. of Korea: Females score lower
Lithuania: Females score lower
Norway: Females score lower
Poland: Females score lower
Russian Fed.: Females score lower
Slovakia: Females score lower
Solvenia: Females score lower
Thailand: Females score lower
Turkey: Females score lower

Parents

ASTC-Maximising girls’ engagement in informal science learning
Learning environment
Media
Ecosystem approach

Engaging Girls in Engineering and Design

Susan Letourneau
Research Associate, New York Hall of Science
sletourneau@nysci.org
emphasizes problem-solving and helps people discover possibilities

provides confidence-building experience with materials, tools and processes

promotes intrinsic motivation, deep engagement and delight
Design Lab & Maker Space: Invitations into design and engineering
Current Research: Narratives, Empathy, and Engineering

Using characters, settings, and stories to convey a design problem and encourage perspective-taking
Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1712803.
Women and STEM Colombia

Enrollment percentage

Data: MEN - 2015

- Math-Sci: 2%
- Engineering: 19%

Women participation

- SCI (less Bio-Che): 33%
- Engineering: 16%-31%

Scientific career

- Women PhD/total: 33%
- Team Leadership inv./total: 34%
Maloka at School

Project based activities mediated by facilitators of Maloka as part of the extended school day

Boys and girls work in teams

First moment of experimentation around different disciplines (5 to 8 sessions)

Second moment of self designed project (6 to 8 sessions)

Third moment of project communication (3 to 4 sessions)
Representation of gender in schools
Draw a Scientist Test

16% to 29% in girls
Transformation of the stereotype of those who do science: More representation of women in girls; diversification of disciplines recognized; understanding of science as a practice rather than a set of concepts, which allows them more identification with science.

Maloka 2016, 2017
The National Girls Collaborative Project
Vision

The National Girls Collaborative Project brings together organizations committed to informing and encouraging girls to pursue careers in science, technology, engineering, and mathematics (STEM).
Project Goals

• **Maximize** access to shared resources
• **Strengthen** capacity of existing programs
• **Collaborate** to create the tipping point for gender equity in STEM
NGCP Model Activities

Virtually:
- Content Rich Project Website
- The Connectory – Collaboration Tool
- FabFems – Mentor and Role Model Tool
- E-Newsletter and Social Media
- Webinars – Exemplary Practices

Local Collaboratives:
- Professional Development: Conferences and Forums
- Incentives to Collaborate: Mini-Grants
- Newsletters and Local Resources
Karen Peterson
Executive Director and Founder
kpeterson@ngcproject.org